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The current study examines the relationships between hitters’ neural activity and their in-game hitting performance. Collegiate
baseball players completed a computerized video task assessing whether thrown pitches were balls or strikes while their neural
activity was recorded. In addition, each player’s hitting statistics were collected for the following baseball season. Results showed
that neural activity during the computerized task was associated with in-game hitting performance, even after accounting for
other individual difference variables. These findings indicate that players’ neural activity measured in a laboratory environment
shows a translational relationship with in-game hitting performance over time. Neural activity provides a more objective analysis
of players’ ongoing self-regulatory processes during hitting and a better understanding of the cognitive processes associated with
hitting performance. Self-regulatory cognitive control is adaptable and trainable, and this research advances the measurement of
cognitive variables related with in-game hitting performance in baseball.

Keywords: event-related brain potentials, ERPs, self-regulation, inhibitory control, proactive control, sport performance

Baseball has seen tremendous advancements in the application
of technology and information processing in recent years. From
high-speed cameras, LiDAR, force plates, and motion capture to a
myriad of advanced statistical models, baseball is working to gather
more objective and exacting information on virtually all baseball-
related processes. Great progress has been made in understanding
many physical and physiological influences on performance, and
some progress has been made in understanding psychological
factors that impact performance (see Chen et al., 2017; Gray, 2010;
Ranganathan & Carlton, 2007; Takeuchi & Inomata, 2009).
However, far fewer advances have been seen in our understanding
of the psychophysiological processes that shape performance.

To address this issue, researchers have begun to examine
patterns of neural activity in baseball players, with a focus on
assessing hitters’ neural activity during pitch perceptions (Chen,
Chang, & Huang, 2022; Chen, Chang, Huang, & Yen, 2020;
Muraskin, Sherwin, & Sajda, 2013, 2015; Nakamoto & Mori,
2008, 2012; Radlo et al., 2001; Sherwin et al., 2012). These studies
explored hitters’ anticipatory processes (Chen et al., 2020, 2022),
hitters’ selection of motor responses (Nakamoto & Mori, 2008,
2012), and hitters’ ability to recognize different pitch types
(Muraskin et al., 2013; Radlo et al., 2001; Sherwin et al., 2012)
using a combination of electroencephalogram (EEG) and func-
tional magnetic resonance imaging methodologies. This research
provided insights into the neural networks and timing of neural
activation related to pitch classification processes and also showed
that expert hitters exert greater inhibitory control—the ability to
inhibit unwanted actions—during hitting (Muraskin et al., 2013,
2015; Nakamoto & Mori, 2008, 2012).

Additional research has further explored the link between
hitting and inhibitory control and other self-regulatory control pro-
cesses (Themanson, Bing, Sheese, & Pontifex, 2019; Themanson,
Hay, Sieving, & Sheese, 2021). Self-regulatory control refers to the
monitoring and control of one’s decisions and actions to meet

intended goals (Gehring &Knight, 2000) when competing needs or
responses are present (Shenhav et al., 2013). Processes that demand
control are not automatic; rather, they typically involve effortful
monitoring, motivation, regulation, or decision-making processes
that are ongoing throughout difficult, erroneous, or novel task
execution (Holroyd & McClure, 2015; Holroyd & Yeung, 2012;
Shenhav et al., 2013). Accordingly, self-regulatory control reflects
a higher order executive function that manages task-relevant
cognitive, action, and decision-making processes in real time
during task engagement. A number of neural measures of self-
regulatory control have been identified and can be assessed using
event-related brain potentials (ERPs). ERPs are collected from a
person’s scalp and provide a measurement of neural activity that is
time locked to discrete events (Coles et al., 1990). Furthermore,
these brain potentials (ERPs) can continuously measure neural
activation throughout a person’s engagement with a task and are
multifaceted, with different ERP components indexing different
cognitive or mental processes (Luck, 2005).

Two ERP components related to self-regulatory control that
occur during a hitter’s perception of a pitch (stimulus-locked ERPs)
have been identified, the N2 and the medial–frontal negativity
(MFN; Themanson et al., 2021). The N2 is generated by the
anterior cingulate cortex (van Veen & Carter, 2002), a structure
that is integral to the implementation of self-regulatory control
(Holroyd & Yeung, 2012; Lieberman & Eisenberger, 2015;
Shenhav et al., 2013) and has been associated with hierarchical
reinforcement learning processes (Botvinick et al., 2009; Holroyd
& Yeung, 2012) utilized to select appropriate actions during task
engagement and extended sequences of actions. As a result, the N2
provides a measure of response inhibition and conflict-monitoring
processes during task execution (Clayson & Larson, 2012; Folstein
& Van Petten, 2008; Yeung et al., 2004). Response inhibition refers
to the process of stopping a response to execute a different response.
This can refer to stopping a response entirely and choosing to not
respond—as in a go/no-go paradigm—or it can refer to the process
of inhibiting an incorrect response to execute a correct response—
as in an Eriksen flanker paradigm (Folstein & Van Petten, 2008).Themanson (jthemans@iwu.edu) is corresponding author.
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This inhibitory process reflects conflict between multiple response
options that exist during task execution, and the proper engagement
in this self-regulatory process helps to ensure that engaged re-
sponses better match intended goals (Clayson & Larson, 2012;
Folstein & Van Petten, 2008; Larson et al., 2014; Yeung et al.,
2004). In baseball, this process can be seen in swing/no swing
decisions for hitters. The hitter needs to inhibit one decisional
response (i.e., swing or no swing) for each pitch to engage the
correct response for that pitch. This higher order process exists for
each pitch independent of motor/response activation to help the
hitter ensure that actions, or nonactions, are properly engaged to
meet intended goals. Hitters that more effectively engage in this
regulatory process should have their performance outcomes match
their goals more closely.

Like the N2, the MFN is also generated by the anterior
cingulate cortex (West, 2003). The MFN provides a measure of
conflict monitoring (Larson et al., 2014; West & Bailey, 2012) and
conflict adaptation (West & Alain, 2000), with larger MFN
amplitudes associated with greater interference. These findings
support the link between the MFN and proactive control that is
sustained throughout task engagement rather than reactive control
that is initiated as conflict is detected (Braver, 2012;West &Bailey,
2012). Proactive control refers to the anticipatory early selection
and maintenance of goal-relevant information to bias attentional
and action systems to minimize the effects of interference before
they occur and sustain goal-directed processing during task
engagement (Braver, 2012). In baseball, this refers to hitters’
sustained active maintenance of task goals (e.g., swing at strikes
and do not swing at balls) during time intervals between pitches
and/or in anticipation of the next pitch throughout the duration of
the task to better prepare for the next pitch. Hitters that actively
sustain and maintain task goals and bias attentional and action
processes toward goal-directed outcomes throughout task engage-
ment should perform more effectively.

These two neural measures of self-regulatory control have
been associated with task performance during the completion of a
computerized pitch perception task in baseball players (Themanson
et al., 2021). Both the N2 andMFNwere positively associated with
task performance, with larger (more negative) N2 and MFN
amplitudes related with more accurate task performance in deter-
mining whether pitches were balls or strikes. Following from these
findings, it has been proposed that inhibitory control and proactive
control may be candidate mechanisms underlying baseball players’
enhanced abilities to engage self-regulatory processes during pitch
perception and produce better performance during hitting tasks
wherein ball/strike and swing/no swing decisions are present
(Themanson et al., 2021).

The current study expands on this foundational research to
explore the specific relationships between N2 and MFN ampli-
tudes with actual in-game hitting performance for collegiate
baseball players. If inhibitory control and proactive control are
mechanisms through which baseball players are able to enhance
hitting performance, then measures of these two self-regulatory
control processes, including the N2 and MFN, should show
positive relationships with in-game hitting performance. Accord-
ingly, we hypothesized that larger (more negative) N2 and MFN
amplitudes would be associated with better in-game hitting
performance in baseball players, suggesting that inhibitory
control and proactive control are positively associated with
performance outcomes in baseball. We also collected data on
other psychological variables that have been associated with
performance to better determine the unique relationships N2 and

MFN amplitudes have with hitting performance. These findings
would extend previous research on the topic (Muraskin et al.,
2013, 2015; Nakamoto & Mori, 2008, 2012; Themanson et al.,
2021) and provide new evidence and insights into the transla-
tional relationship between laboratory-based measures of self-
regulatory control processes and performance on the field
over time.

Methods

Participants and Psychological Assessment

Nineteen active Division III collegiate baseball players between the
ages of 18 and 22 years volunteered to participate in the study (age:
M = 19.8 years, SD = 1.4). Players received no course credit or
compensation for their participation. Players (n = 1) with excessive
noise and artifacts obtained during ERP data collection were
discarded from the analyses as were players (n = 4) who did not
have at least 50 official plate appearances in the college baseball
season immediately following the collection of their neural data,
resulting in a final sample size of 14 collegiate baseball players. All
players reported normal or corrected vision. The study was
approved by the institutional review board at the participating
institution, and all players signed an informed consent form indi-
cating their willingness to participate and their understanding of the
research protocols. Following the completion of the informed
consent, players completed a number of measures to assess their
anxiety, affect, and personality. State and trait anxiety were assessed
using the State-Trait Anxiety Inventory (Spielberger et al., 1983).
Positive and negative affect were assessed using the Positive and
Negative Affect Schedule (Watson et al., 1988), and five-factor
personality was assessed using a 100-item personality inventory
developed from the International Personality Item Pool Scale
(Goldberg, 1999; Goldberg et al., 2006).

Paradigm

Players were asked to determine whether computerized baseball
pitches were balls or strikes. Players sat 1 m in front of a computer
monitor and viewed a series of pitches being thrown by a
computerized baseball pitcher. The computerized video was re-
corded using virtual reality software (Big Hit VR Baseball, version
1.0.1, Big Hit Games). Recordings of each pitch video utilized a
virtual reality headset to record the pitch from the visual perspec-
tive inside the batter’s box, and recordings were made from each
batter’s box to allow players to complete the task from a realistic
visual perspective based on their handedness while batting
(i.e., right, left, and switch). Players were instructed to sit quietly
and remain still, including keeping their heads and eyes still, to
minimize head and eye movement artifacts from the neural data.
Each pitch video lasted a total of 1,000 ms. Each video started as
the release of the pitch was occurring, with the actual pitch
occurring over the first 400–500 ms of each video (depending
on the pitch type) and continuing for the duration of the 1,000 ms.
Players responded within the first 500 ms of each pitch video
(i.e., while the pitch was in the air) to reliably replicate the timing
of a swing decision and behavior during an actual plate appear-
ance. Responses were recorded on a response pad with players
pressing a button with their left thumb indicating that the pitch was
a ball or with their right thumb indicating that the pitch was a
strike. Visual feedback was given immediately following the
conclusion of each pitch video and lasted for 1,000 ms. The
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feedback indicated whether the player had made a correct or
incorrect ball/strike decision (similar to the feedback hitters
receive from an umpire). Following the presentation of the feed-
back, a blank screen was presented for 1,000 ms and then the next
pitch video immediately followed (see Figure 1). All of the pitch
videos and feedback stimuli were presented within a visual display
that only subtended a vertical visual angle of 7.44° and a hori-
zontal visual angle of 9.72° to ensure that head and eye movements
were not necessary to perform the task. Furthermore, the pitching
motion from the release point when each video started continuing
through the pitcher’s follow-through was identical for each pitch,
regardless of pitch type or whether the pitch was a ball or strike, to
control for any confounds due to differences in pitcher mechanics.
Participants completed four blocks of 50 pitches each for a total of
200 pitch trials. Players saw a random array of six different pitch
types (fastball, curve, slider, cutter, sinker, and changeup) within
each pitch block. Two blocks of the task utilized a right-handed
pitcher, and the other two blocks utilized a left-handed pitcher.
The four task blocks were counterbalanced across players, and
ball and strike pitches were randomly ordered and equiprobable
within each task block. Of the 100 strike pitches, there were
20 fastball strikes and 16 strikes from each of the other pitch
types (curve, slider, cutter, sinker, and changeup). Of the 100 ball
pitches, there were 20 fastball ball pitches, with five ball pitches
at each ball location (high, low, inside, and outside). There were
16 ball pitches for each other pitch type, with four ball pitches at
each ball location (high, low, inside, and outside). The virtual
pitch speeds ranged from a high speed of 94 mph (fastest fastball
speed) to a low speed of 76 mph (slowest curveball speed). The
results and theoretical implications from the study were not
shared with the players prior to the following baseball season
to avoid any potential confounding influences on in-game
performance.

Behavioral Assessment

For the assessment of in-game hitting performance in this study,
publicly available game statistics were collected from teamwebsites
for the players in the study. The statistics that were collected were
batting average (BA), on-base percentage (OBP), slugging percent-
age (SLG), and on-base plus SLG (OPS) for each of the players
during the collegiate baseball season that occurred immediately
following each player’s laboratory assessment.

Neural Assessment

This study used an EEG to measure ongoing neural activity during
the pitching paradigm and create ERPs for each pitch during the
paradigm. ERPs possess a superior temporal resolution when com-
pared with functional neuroimaging techniques (functional magnetic
resonance imaging) and can provide valuable insights into the
dynamic neural responses to baseball pitches on a millisecond level,
which is not possible with functional magnetic resonance imaging
technology (Kappenman & Luck, 2016; Luck, 2005).

The EEG was recorded from 64 sintered Ag–AgCl electrodes
embedded in a Lycra cap arranged in an extended montage based
on the international 10–10 system (Chatrain et al., 1985) with a
ground electrode (AFz) on the forehead. The sites were referenced
online to a midline electrode placed at the midpoint between Cz and
CPz. Vertical and horizontal bipolar electrooculographic activity
was recorded to monitor eye movements using sintered Ag–AgCl
electrodes placed above and below the right orbit and near the outer

canthus of each eye. Impedances were kept below 10 kΩ for all
electrodes. A Neuroscan Synamps2 bioamplifier (Neuro Inc.), with
a 24-bit analog-to-digital converter and ±200 mV input range, was
used to continuously digitize (500 Hz sampling rate), amplify (gain
of 10), and filter (70-Hz low-pass filter, including a 60-Hz notch
filter) the raw EEG signal in direct current mode (763 μV/bit
resolution). EEG activity was recorded using Neuroscan Scan
software (version 4.3.1). Psychology software (PsychoPy, version
1.84.2) was used for stimulus and feedback presentation and to
record participant responses.

Offline processing of the EEG to identify ERP components
included eye blink correction using a spatial filter (Compumedics
Neuroscan, 2003), rereferencing to average mastoids, baseline
correction (100-ms time window that runs from −100 ms to
0 ms prior to the pitch), bandpass filtering (1–12 Hz; 24 dB/octave;
Pontifex et al., 2010), and artifact rejection (epochs with signal that
exceeded ±75 μV were rejected). The spatial filter is a multistep
procedure that generates an average eye blink, utilizes a spatial
singular value decomposition based on principal component anal-
ysis to extract the first component and covariance values, and then
uses those covariance values to develop a filter that is specifically
sensitive to eye blinks and removes those eye blinks from the EEG
(Pontifex et al., 2010; Themanson et al., 2019, 2021).

For both the N2 and MFN, the measurement window param-
eters were determined by creating overall average waveforms
across all pitches and players (i.e., collapsed localizers; Luck &
Gaspelin, 2017; Themanson et al., 2021). N2 was quantified as the
average amplitude between 200 and 330 ms poststimulus in the
average waveform of all pitch stimulus events at FCz. MFN was
quantified as the average amplitude between 330 and 550 ms
poststimulus in the average waveform of all pitch stimulus events
at FCz. The data for each participant were outputted into SPSS
(version 25.0) for statistical analysis.

Statistical Analysis

Primary analyses were conducted using hierarchical stepwisemultiple
regression analyses. Prior to hypothesis testing, bivariate Pearson
product–moment correlations were calculated between hitting statis-
tics in the season following the study, N2 amplitude, MFN amplitude,
and a number of individual difference factors, including personality,
anxiety, affect, age, and number of career plate appearances. Correla-
tions including personality, anxiety, and affect were examined due to
findings in previous research showing relations between these indi-
vidual difference variables and either N2, MFN, or task performance
(Murray & Janelle, 2003; Sehlmeyer et al., 2010). Furthermore, age
and the number of career plate appearances were included in correla-
tional analyses as these variables may be associated with hitting
statistics (i.e., the more plate appearances you get and the longer you
play in games, the better you are at hitting). Separate analyses were
conducted for hitting statistics with each neural component of interest
(N2 and MFN). Any individual difference factors significantly corre-
lated with hitting statistics were entered in the first step of the analysis
(Miller &Chapman, 2001), and independent factors were added in the
subsequent step of the analysis. Goodness of fit of the models was
considered in terms of variance explained by the variables in the
equation, expressed as R2. The increase in variance explained by the
models was testing for significance after each step to establishwhether
independent factors (N2 and MFN) accounted for a significant
proportion of the variance in the dependent measures. The alpha
level was set at p ≤ .05 for each individual analysis, and all analyses
included every participant in the final sample with hitting statistics.
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Results

Table 1 summarizes player values for hitting statistics as well
as their neural measures in the task. Figure 2 provides ERP
waveforms averaged across all players and pitch stimuli in the
task, highlighting the observed N2 and MFN components. Bivari-
ate correlations were calculated between each of these neural
measures and available hitting statistics (BA, OBP, SLG, and
OPS) for the following season. Due to shortened 2020 and 2021
college baseball seasons, a minimum of 50 plate appearances was
required for players to be included in the analyses (n = 14).
Correlations revealed significant relationships between N2, MFN,
and hitting statistics for college players, with larger (more negative)
N2 and MFN amplitudes associated with each higher BA, OBP,

SLG, and OPS. In addition, bivariate correlations were calculated
between the hitting statistics, number of career plate appearances,
age, five-factor personality, state and trait anxiety, and negative and
positive affect. Correlations revealed that negative affect was
correlated with hitting statistics. No other variables were correlated
with any of the hitting statistics. Table 2 provides correlation
coefficients among hitting statistics, measures of neural activity,
and individual difference variables for the players in the study.

Previous research has revealed relationships between the N2
and MFN and performance in this task (Themanson et al., 2021).
Accordingly, we examined correlations between the N2, MFN,
and response accuracy in the task to confirm previous findings.
Analyses revealed similar relationships to previous research with
greater (more negative) N2, r = −.38, p = .18, andMFN amplitudes,

Table 1 Batting Average, On-Base Percentage, Slugging Percentage, OPS,
N2 Amplitude, and Medial-Frontal-Negativity Amplitude for Baseball Players
in the Baseball Season Immediately Following the Computerized Paradigm

Variable M (SD) Min–max

Batting average 0.294 (0.084) 0.147–0.455

On-base percentage 0.398 (0.082) 0.216–0.510

Slugging percentage 0.379 (0.123) 0.147–0.591

OPS (on-base plus slugging percentage) 0.780 (0.194) 0.363–1.101

N2 amplitude −6.87 μV (3.66) −0.86 to −12.96

Medial–frontal negativity −4.60 μV (3.66) 1.11 to −12.53
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Figure 2 — Grand-averaged pitch-locked waveforms for all pitch stimuli at the FCz electrode site. MFN = medial–frontal negativity; ERP = event-
related brain potentials.
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r = −.36, p = .21, associated with greater response accuracy.
Although these relationships were not as strong in the current
sample compared with those found in previous research, they
support the broader finding that self-regulatory neural activity is
related with baseball performance. We also assessed relationships
between task performance in the current paradigm and hitting
performance. The relationships were in the expected direction,
with better task performance associated with better hitting perfor-
mance, but the relationships were not statistically significant,
rs ≤ .28, ps ≥ .35, suggesting that behavioral performance specifi-
cally on the computerized paradigm in this study may not be a
useful assessment tool for overall hitting performance.

To more thoroughly examine the relationships found between
N2, MFN, and in-game hitting statistics, analyses were conducted
using hierarchical stepwise multiple regression to assess the
unique relationships between N2 amplitude and MFN amplitude
and OPS in the following season. For these analyses, negative
affect was entered as a covariate in the first step of each analysis,
and N2 amplitude and MFN amplitude, respectively, were entered
in the second steps of their analyses. Results presented here detail
the regression analyses examining OPS. Similar analyses were

conducted for each of the other hitting statistics (BA, OBP, and
SLG) for the following baseball season. Regression analyses
revealed significant effects for both the N2 and MFN with both
BA and SLG, but no significant effects were present with OBP.

The overall regression model including the N2 was signifi-
cant, R2 = .71, F(2, 11) = 5.5, p = .02, and revealed a significant
effect for N2 in the second step, ΔR2 = .23, F(1, 11) = 4.97,
p = .05, suggesting a unique association between N2 amplitude
and OPS above and beyond the relationship negative affect
had with OPS in the following season (see Table 3 left). For
the MFN, the overall regression model was significant, R2 = .70,
F(2, 11) = 5.4, p = .02, and revealed a significant effect for MFN
in the second step, ΔR2 = .22, F(1, 11) = 4.8, p = .05, suggesting a
unique association between MFN amplitude and OPS above and
beyond the relationship negative affect had with OPS in the
following season (see Table 3 right). Figure 3 provides a scat-
terplot of the relationship between the residuals of N2 and OPS
after removing the effect of negative affect from both variables,
and Figure 4 provides a scatterplot between the residuals of MFN
and OPS after removing the effect of negative affect from both
variables.

Table 2 Correlations Between Hitting Statistics for the Following Baseball
Season, N2 Amplitude, MFN Amplitude, and Individual Difference Variables

Variable
Batting
average

On-base
percentage

Slugging
percentage OPS

N2 −.69** −.60* −.65* −.67**

MFN −.67** −.56* −.64* −.65*

Career plate appearances .19 .24 .40 .35

Age .32 .43 .32 .40

F-I −.16 −.05 −.13 −.11

F-II .06 .03 .05 .03

F-III −.22 .12 −.20 −.10

F-IV −.18 .03 −.27 −.20

F-V −.14 −.02 .14 .08

State anxiety .27 .24 .22 −.16

Trait anxiety .23 .07 .11 .08

Positive affect −.21 −.30 −.22 −.24

Negative affect −.57* −.72** −.37 −.53*

Note. N2 = N2 amplitude; MFN = medial–frontal negativity; F-I = extraversion; F-II = agreeableness; F-III = conscien-
tiousness; F-IV = emotional stability; F-V = intellect; OPS = on-base plus slugging.
*p < .05. **p < .01.

Table 3 Summary of the Regression Analysis for Variables Predicting OPS for the Following Baseball Season,
Including N2 Amplitude (Left) and MFN Amplitude (Right)

Variable B SE B CI B β Variable B SE B CI B β
Step 1 Step 1

NA −0.04 0.02 [−0.08, −0.01] −0.52* NA −0.04 0.02 [−0.08, −0.01] −0.52*

Step 2 Step 2

NA −0.02 0.02 [−0.06, 0.02] 0.59 NA −0.02 0.02 [−0.06, 0.02] −0.29

N2 −0.03 0.01 [−0.06, −0.01] −0.54* MFN −0.03 0.01 [−0.06, −0.01] −0.53*

Note. NA = negative affect; CI = 95% confidence interval; OPS = on-base plus slugging percentage; MFN =medial–frontal negativity.
*p < .05.
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Figure 3 — Scatter plot for the relationship between residuals for N2 amplitude and OPS after controlling for the influence of negative affect.
OPS = on-base plus slugging percentage.
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Figure 4 — Scatter plot for the relationship between residuals for MFN amplitude and OPS after controlling for the influence of negative affect.
OPS = on-base plus slugging percentage; MFN =medial–frontal negativity.
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Discussion

The current study provides evidence for relationships between
patterns of neural activity during pitch perception and in-game
hitting performance for collegiate baseball players. This study is
the first to examine the translational relationship between measures
of neural activity obtained during a computerized task and in-game
hitting performance. Specifically, we found that greater inhibitory
control (measured using N2 amplitude) and greater proactive
control (measured using MFN amplitude) were both associated
with greater OPS in collegiate baseball players during the baseball
season immediately following the study. These relationships were
significant and meaningful even after accounting for other individ-
ual difference variables known to influence task performance.
These relationships between N2, MFN, and OPS were further
supported by the relationships that N2 andMFN exhibited with BA
and SLG (though these findings were not detailed in this report).
These findings speak to the importance of expanding our measure-
ment and information gathering in baseball to include players’
cognitive processes and patterns of neural activity. In addition,
these findings reveal how self-regulatory control processes mea-
sured in a laboratory show beneficial and translational relationships
with real-world performance.

Inhibitory Control

We observed that enhanced N2 amplitudes were associated with
greater OPS, BA, and SLG in baseball players. Given that the N2
has been related to the inhibitory control of actions (Folstein & Van
Petten, 2008) and response conflict processes (Clayson & Larson,
2012), these findings suggest that baseball players executing the
task under heightened levels of inhibitory control and conflict
adaptation are performing better in games. In baseball, hitters must
inhibit one decisional possibility (swing or no swing) in response to
each pitch to engage the goal-motivated correct response for that
pitch. Inhibitory control is considered vital for the programming
and reprogramming of task-relevant action and behavioral flexibil-
ity during task execution (Mars et al., 2007; Nakamoto & Mori,
2012). Furthermore, the combined neural and behavioral effects in
the present study support the previously noted effects that expert
baseball players exhibit greater response inhibition and inhibitory
control compared with novices (Nakamoto & Mori, 2008, 2012).

Proactive Control

In addition to the N2, we also observed significant relationships
between the MFN and hitting performance, with greater (more
negative) MFN amplitudes associated with greater OPS, BA, and
SLG in collegiate baseball players. The MFN has been theorized to
reflect proactive control during task engagement (West & Bailey,
2012). Proactive control is described as a preparatory control
mechanism, which differs from the reactive control that occurs
in response to the momentary detection of conflict. Proactive
control aims to prime and sustain task-relevant processing path-
ways before and throughout task engagement in an effort to adapt
performance (Braver, 2012). These performance adaptations and
control processes attempt to overcome task-related conflict and
continue throughout the performance of a task, from several
seconds to several minutes (De Pisapia & Braver, 2006). In
baseball, this refers to actively sustaining task goals (e.g., swing
at strikes and do not swing at balls) throughout the duration of the
task to better prepare for, and perform in response to, the next pitch.

Neural Activity and Performance

The relationships between in-game hitting performance and N2 and
MFN amplitudes in the current study support the hypothesis that
inhibitory control and proactive control may be mechanisms
through which baseball players are better able to perform
(Themanson et al., 2021). The present findings further support
these claims by providing direct evidence that these components
remain meaningful predictors of OPS and other hitting metrics
(BA and SLG) after accounting for the effects of other individual
difference variables and factors, including career plate appear-
ances, age, anxiety, personality, and affect. Furthermore, these
components show relationships with hitting metrics across long
periods of time (i.e., months). Accordingly, highlighting inhibitory
control and proactive control when working with players may
enhance skill acquisition, learning processes, and performance
outcomes. These findings are noteworthy in that players’ neural
activity (measured in a controlled laboratory environment) is
showing a translational relationship with in-game hitting perfor-
mance over time. These relationships persist across these longer
time periods because there are stable, trait-like, individual differ-
ence factors related with individuals’ implementation of inhibitory
control, proactive control, and other executive attentional control
processes (Braver, 2012), including fluid intelligence (Kane &
Engle, 2002) and reward sensitivity (Jimura et al., 2010). These
measures of neural activity provide for a more objective analysis of
players’ ongoing self-regulatory cognitive processes compared
with self-report measures. This advances the measurement of
cognitive/psychological variables related to in-game performance
much like high-speed cameras, motion capture, and force plates
have done for physical/physiological variables.

Limitations and Future Directions

One limitation is the small sample size. The limited sample size
may have contributed to the notable strength of associations
between the neural measures and in-game performance measures
observed in the current investigation. Additional investigations
utilizing larger samples of player participants may not exhibit the
same strength of relationships between neural activity and game
performance, although the associations between these measures
would persist in meaningful and significant ways across samples
and studies. Further evidence for the validity and reliability of
the present findings is provided by the consistent pattern of similar
relationships observed in previous research examining self-
regulatory processes (Arbel & Wu, 2016; Nakamoto & Mori,
2008, 2012; Themanson et al., 2019, 2021). The current study
serves to extend and improve upon previous research by examining
neural activity to pitch stimuli in relation to actual in-game task
performance. Future studies utilizing larger participant samples
across levels of play (A, AA, AAA, etc.) are warranted as are study
designs that allow for causal inferences and more precise temporal
modeling between self-regulatory neural activity and task perfor-
mance measures.

Conclusions

This research provides the first evidence for the beneficial relation-
ships between patterns of neural activity and in-game hitting perfor-
mance in baseball. The current study adds to a growing number of
studies that show how measures of neural activity can reveal hitters’
self-regulatory cognitive processes (Nakamoto & Mori, 2008, 2012;
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Themanson et al., 2019, 2021) and extends that work to show how
these processes may inform hitters’ in-game performance. Neural
activity during the pitch reflects response inhibition processes and
proactive self-regulatory control processes. These processes are
associated with task execution as well as self-regulatory adjustments
in motor performance to improve overall outcomes. Furthermore, our
findings suggest that players’ real-time implementation of self-regu-
latory control processes, including inhibitory and proactive control
obtained through direct measures of their neural activity, is related to
their in-game hitting performance and that inhibitory control and
proactive control may be mechanisms underlying hitters’ attempts to
improve their task performance. Practical implications and uses for
this research include assisting and refining player evaluations and
player development procedures. Although trait influences exist, self-
regulatory cognitive control is adaptable and trainable (Anguera et al.,
2013; Cahn & Polich, 2006; Edwards et al., 2010; Miltner et al.,
1988), and a number of factors have been shown to exhibit influences
on themagnitude of multiple components of neural activity, including
the N2 (Folstein & Van Petten, 2008). Using these neural measures,
players, coaches, and organizations can obtain a more objective
measure of ongoing self-regulatory processes present during a plate
appearance to improve hitting performance in game situations.
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