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This study investigated the relationships among neural activity related to pitch stimuli and task feedback, self-regulatory control,
and task-performance measures in expert and novice baseball players. The participants had their event-related brain potentials
recorded while they completed a computerized task assessing whether thrown pitches were balls or strikes and received feedback
on the accuracy of their responses following each pitch. The results indicated that college players exhibited significantly larger
medial frontal negativities to pitch stimuli, as well as smaller reward positivities and larger frontocentral positivities in response to
negative feedback, compared with novices. Furthermore, significant relationships were present between college players’ neural
activity related to both pitches and feedback and their task performance and self-regulatory behavior. These relationships were
not present for novices. These findings suggest that players efficiently associate the information received in their feedback to their
self-regulatory processing of the task and, ultimately, their task performance.
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In an effort to gain a competitive edge in the game of baseball,
some teams, analysts, and researchers have begun to examine
hitters’ neural activity. These investigations have focused on
assessing neural activity associated with classifying different pitch
types (Muraskin et al., 2013, 2015; Nakamoto & Mori, 2008,
2012). While this research is insightful in learning the time course
and neural structures utilized in pitch recognition processes, these
efforts do not account for the influences of pitch decisions and umpire
feedback on the subsequent cognitive processes and behavior of
hitters throughout a plate appearance. Importantly, we can obtain
valuable insight into hitters’ cognitive processes, including their
inhibitory control, attentional focus, and ability to correct behavior
by measuring the dynamic distribution of pitch-by-pitch neural
activity rather than looking at each pitch separately. The current
study has been designed to address this gap in our knowledge by
providing ongoing neural and behavioral measures during a sequence
of pitches and performance feedback. By examining neural activity
related to pitches and the feedback hitters receive at the plate, we can
measure how hitters process all of this information and attempt
adjustments to improve their performance.

The initial research examining neural activity during hitting
focused on pitch classification (Muraskin et al., 2013, 2015;
Nakamoto & Mori, 2008, 2012; Radlo et al., 2001; Sherwin et
al., 2012). The intention of these studies was to examine hitters’
recognition of different pitch types (Muraskin et al., 2013; Radlo
et al., 2001; Sherwin et al., 2012) or hitters’ selection of motor
responses (Nakamoto & Mori, 2008, 2012). Using a combination
of electroencephalogram (EEG) and functional magnetic resonance
imaging (fMRI) methodologies, this research showed clear timing
and structural signals of neural network activation related to correct
versus incorrect pitch classification decisions and suggested pat-
terns of individual differences in neural activation for specific

hitters across different pitches (Muraskin et al., 2013). Additional
research has shown that expert hitters exert greater inhibitory
control during hitting and possess more efficient and effective
stimulus–response sets associated with hitting performance
(Muraskin et al., 2015; Nakamoto & Mori, 2008, 2012).

While these studies were useful in learning the time course and
neural structures utilized by hitters for pitch classification, they did not
examine the self-regulatory cognitive processes involved in adjusting
at the plate on a pitch-by-pitch basis or the impact correct and
incorrect pitch decisions and feedback may have on subsequent
hitting behavior. During task execution, one is continually engaged
in the real-time self-regulatory monitoring of one’s performance. This
self-regulatory process, labeled “action monitoring,” is utilized to
ensure that one’s behaviors match the intended outcomes (Gehring &
Knight, 2000) and is vital for both goal-directed behavior and learning
(Holroyd & Coles 2002). Without this action monitoring process, the
cognitive system would not be able to flexibly process ongoing
performance feedback and adapt subsequent behaviors to achieve
intended outcomes (Yeung et al., 2004).

One way to measure these action-monitoring processes is
through event-related brain potentials (ERPs). Event-related brain
potentials refer to neural activity measured on the scalp that is time-
locked to discrete events (Coles et al., 1990). These ERPs provide
continuous millisecond resolution measurement of neural activa-
tion throughout a person’s engagement with a task. The ERPs are
multifaceted, with different ERP components indexing different
cognitive processes (Luck, 2005). For hitters in baseball, different
action monitoring processes may be engaged during pitch percep-
tion compared with those engaged in response to performance
feedback from an umpire following a pitch. Furthermore, with their
excellent temporal resolution, ERPs can complement neuroimag-
ing measures (fMRI) to provide a broader and deeper understand-
ing of the timing and relationship among neural structures involved
in the cognitive processing of task engagement.

Both neural and behavioral indices of action monitoring have
been identified, and a recent study examined a number of these
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measures with baseball players (Themanson et al., 2019). In their
study, Themanson et al. (2019) examined ERPs in response to
performance feedback along with task performance during a pitch
classification paradigm in collegiate baseball players and novices.
ERPs are necessary to discover the influence of neural activity on
task performance in pitch perception, as the entire task of reacting to
a baseball happens so quickly that there is no time for a hitter to
reliably report what they are thinking during the task. By examining
ERPs to performance feedback (feedback-locked ERPs), the re-
searchers were assessing cognitive self-regulatory and learning
processes that utilize informational aspects of performance feedback
to improve subsequent task performance. The ERP components of
interest were the reward positivity (RewP; also referred to as
feedback-related negativity [FRN] by Themanson et al., 2019,
and others) and the frontocentral positivity (FCP). The RewP is
generated by the anterior cingulate cortex (ACC) and reflects a
reward prediction error mechanism in the brain that indexes an
individual’s performance expectations compared with outcomes
(Holroyd & Coles, 2002; Holroyd & Yeung, 2012; Krigolson,
2018). The RewP initiates the motor systems in the brain to
make self-regulatory adjustments (Baker & Holroyd, 2011;
Holroyd & Yeung, 2012) and is sensitive to the difference in value
between actual and expected outcomes (Holroyd & Krigolson,
2007). Furthermore, the RewP has been associated with behavioral
changes following feedback, including posterror slowing and
increased response accuracy (Cohen & Ranganath, 2007; van der
Helden et al., 2010; Walsh & Anderson, 2012). The FCP reflects an
attentional orienting process (Kok, 2001; Polich, 2007) that redirects
attention toward feedback information, is modulated by learning, and
has been related to learning and performance outcomes (Arbel &Wu,
2016; Butterfield & Mangels, 2003; Themanson et al., 2019). The
FCP has been theorized to indicate greater top–down control of focal
attention (Polich, 2007). The researchers found that college baseball
players exhibited greater FCP amplitudes to feedback compared with
novices, and relationships were present between the RewP amplitude
and posterror response accuracy in college players, but not novices.
Importantly, this sheds light on the layers of information and processes
that can influence a hitter’s performance, well beyond what happens
during one pitch.

Although the study was important for examining self-
regulatory influences on pitch classification processes, it was
limited in that the research paradigm used video from a visual
perspective behind home plate, not from a more realistic visual
perspective in the batter’s box. Furthermore, the study did not
examine neural activity during the pitches themselves. During
pitches, measuring the neural activity related to action monitoring
could enhance our knowledge of how mental processes engaged
between the pitches and feedback may relate to one another and
task performance. By measuring ERPs to pitch stimuli (stimulus-
locked ERPs), we can examine ongoing attentional control and
inhibitory processes utilized to maintain task-relevant monitoring
processes during task engagement. The stimulus-locked ERP
components related to action monitoring that occur during the
pitches are the N2 and the medial frontal negativity (MFN)
components. The N2 indexes response inhibition and conflict
monitoring processes during task execution (Clayson & Larson,
2012; Folstein & Van Petten, 2008; Yeung et al., 2004). Similar to
the RewP, the N2 is generated by the ACC (van Veen & Carter,
2002) and has been associated with hierarchical reinforcement
learning processes (Botvinick et al., 2009; Holroyd & Yeung,
2012). The MFN also originates from the ACC (West, 2003) and is
associated with conflict monitoring (Larson et al., 2014; West &

Bailey, 2012) and conflict adaptation (West & Alain, 2000).
Research has linked the MFN with proactive control sustained
throughout task engagement rather than reactive control initiated in
response to detected conflict (West & Bailey, 2012).

In the present study, we extend previous research by examin-
ing ERPs to performance feedback (RewP and FCP) and measuring
ERPs during the pitches themselves (N2 and MFN) while parti-
cipants complete a pitch-classification paradigm. Additionally, the
current study uses the visual perspective of a hitter in the batter’s
box, making the task more realistic. By examining the dynamic
distribution of pitch-by-pitch neural activity and outcomes rather
than just looking at each pitch separately, we can obtain valuable
insight into hitters’ cognitive processes throughout a plate appear-
ance and better understand their self-regulatory adjustments and
action monitoring processes, in addition to their ongoing behavior.
Wemay also be able to learn which hitters may be better or worse at
utilizing feedback in making their cognitive adjustments at the
plate. We hypothesized that college players would exhibit greater
N2 and MFN amplitudes compared with novices, suggesting that
they engaged in more inhibitory and proactive control during task
engagement and extending previous research (Nakamoto & Mori,
2008, 2012). Furthermore, we hypothesized that RewP and FCP
amplitudes would be associated with task performance measures
for college players, with larger RewP and FCP amplitudes associ-
ated with greater posterror performance. These findings would be
consistent with previous studies (Arbel & Wu, 2016; Themanson
et al., 2019) and would suggest that college baseball players were
better able to utilize their feedback processing in an attempt to
better learn and improve their performance.

Methods

Participants

Twenty male undergraduate students between the ages of 18 and 22
with little or no organized baseball experience were recruited to
participate in this research study. These participants all stopped
playing organized baseball before entering high school (age: M =
18.9 years, SD = 1.0; years of baseball: M = 5.3 years, SD = 3.8)
and were awarded research credit toward a course requirement for
their participation in the study. In addition, 15 active Division III
collegiate baseball players between the ages of 18 and 22 volun-
teered to participate in the study (age: M = 19.4 years, SD = 0.9;
years of baseball: M = 14.7 years, SD = 2.0). These participants
received no course credit or compensation for their participation.
Participants (n = 4) who did not fully complete the study due to
computer and equipment difficulties were discarded from the anal-
yses, as were participants (n = 2) with excessive noise and artifacts
obtained during the ERP data collection, resulting in a final sample
size of 29 participants (15 novice college students and 14 collegiate
baseball players). All participants reported normal or corrected
vision. The study was approved by the institutional review board
at the participating institution, and all participants signed an
informed consent form indicating their willingness to participate.

Paradigm

After obtaining informed consent, the participants were asked to
determine if video recordings of computerized baseball pitches
were balls or strikes. The participants sat 1 m in front of a computer
monitor and viewed pitches being thrown by a computerized
baseball pitcher from the visual perspective of being in the batter’s
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box. The computerized video was recorded using virtual reality
software (Big Hit Virtual Reality Baseball, version 1.0.1; Big Hit
Games, Seoul, South Korea). Each pitch video was recorded using
a virtual reality headset to record the pitch from the visual
perspective inside the batter’s box. Recordings were made from
each batter’s box so that the participants could complete the task
from a realistic visual perspective based on their handedness while
batting (right, left, and switch). The participants were instructed to
respond as quickly and as accurately as possible as the pitch was
being thrown and the ball was in the air approaching home plate
—just like timing a swing decision during an actual plate
appearance. The responses were recorded with the participants
pressing a button with their left thumb to indicate a ball or with
their right thumb to indicate a strike. Each pitch video lasted
1,000 ms, with the video starting as the release of the pitch was
occurring; the participants had to respond within 500 ms from the
release of the pitch for their response to be recorded. To study the
influence of external feedback, visual feedback was given imme-
diately following the conclusion of the pitch video and lasted for
1,000 ms. The feedback indicated whether the participant had
made a correct or incorrect ball/strike decision (similar to the
nature of umpire feedback). Following the presentation of the
feedback, a blank screen was presented for 1,000 ms, and then
the next pitch video immediately followed (see Figure 1). The
paradigm involves four blocks of 50 pitches each, for a total of
200 pitch trials. The participants saw a random array of six
different pitch types (fastball, curve, slider, cutter, sinker, and
changeup). Two blocks of the task utilized a right-handed
pitcher, while the other two blocks utilized a left-handed pitcher.
The four task blocks were counterbalanced across participants.
Ball and strike pitches were equiprobable and randomly ordered
within each task block.

Behavioral Assessment

The behavioral data were collected for response time (RT; time in
ms from the presentation of the pitch stimulus) and response
accuracy (i.e., number of correct and error responses) for all trials
across task blocks for all participants. In addition to these overall
measures, multiple additional behavioral measures of response
accuracy and RT were calculated for each participant (Themanson
et al., 2014; Themanson et al., 2012; Themanson et al., 2019). These
measures utilize the set of error trials for each participant and
involve selecting individual correct trials for each participant,
without replacement, that matched the RT for each error trial. This
matching procedure results in an equal number of matched-
correct trials and error trials for each participant to compare
differences in postfeedback behavior across accuracy conditions
(i.e., posterror behavior vs. postcorrect behavior). For trials
immediately following an error trial (posterror trials), and trials
immediately following a matched-correct trial (postmatched cor-
rect trials), each participant’s postfeedback behavior (response
accuracy, RT) was calculated as described above. Postfeedback
behavior was calculated to examine whether behavioral differ-
ences obtained in the present investigation were due specifically
to error feedback-related adjustments in cognitive control
(e.g., posterror slowing).

Neural Assessment

This study used an EEG to measure ongoing neural activity during
the pitching paradigm and created ERPs for each event during the

paradigm. The EEG was recorded from 64 sintered Ag–AgCl
electrodes embedded in a lycra cap arranged in an extended
montage based on the International 10–10 system (Chatrain et
al., 1985), with a ground electrode (AFz) on the forehead. The sites
were referenced online to a midline electrode placed at the mid-
point between Cz and CPz. Vertical and horizontal bipolar elec-
trooculographic activity was recorded to monitor eye movements
using sintered Ag–AgCl electrodes placed above and below the
right orbit and near the outer canthus of each eye. Impedances were
kept below 10 kΩ for all electrodes. A Neuroscan Synamps2
bioamplifier (Compumedics USA Inc., Charlotte, NC), with a
24 bit A/D converter and ±200 mV input range, was used to
continuously digitize (500 Hz sampling rate), amplify (gain of 10),
and filter (70-Hz low-pass filter, including a 60-Hz notch filter) the
raw EEG signal in direct-current mode (763 μV/bit resolution).
EEG activity was recorded using Neuroscan Scan software (ver-
sion 4.3.1; Compumedics USA Inc., Charlotte, NC). Psychology
software in Python (PsychoPy, version 1.84.2; Jon Peirce, Univer-
sity of Nottingham, Nottingham, United Kingdom) was used for
the stimulus and feedback presentation and to record participant
responses.

The ERPs were measured for each event during the paradigm.
ERPs possess a superior temporal resolution when compared with
functional neuroimaging techniques (fMRI) and can provide valu-
able insights into the dynamic neural responses to baseball pitches
on a millisecond level, which is not possible with fMRI technology
(Kappenman & Luck, 2016; Luck, 2005). Offline processing of the
ERP components included eye blink correction using a spatial filter
(Compumedics Neuroscan, 2003), rereferencing to average mas-
toids, baseline correction (100-ms time window that runs from
−100 to 0 ms prior to the event), band-pass filtering (1–12 Hz;
24 dB/octave; Pontifex et al., 2010), and artifact rejection (epochs
with signal that exceeded ±75 μV were rejected). The spatial filter
is a multistep procedure that generates an average eye blink, utilizes
a spatial singular value decomposition based on principal compo-
nent analysis to extract the first component and covariance values,
and then uses those covariance values to develop a filter that is
specifically sensitive to eye blinks and removes those eye blinks
(Pontifex et al., 2010; Themanson et al., 2012, 2014, 2019). For
feedback-related ERPs, feedback-locked epochs (−100 to 1,000 ms
relative to feedback presentation) were created, and for stimulus-
related ERPs, stimulus-locked epochs (−100 to 1,000 ms relative to
pitch presentation) were created. Average ERP waveforms for
correct feedback trials were matched to error feedback trial wave-
forms on RT and the number of trials to protect against differential
artifacts from any stimulus-related activity (Coles et al., 2001). The
matching procedure (described above for the assessment of poster-
ror behavior) removes any artifacts that may exist in the timing of
ongoing neural processing due to differences in response latency
for correct and error trials. This procedure results in an equal
number of matched correct trials and error trials for each individual
to compare differences across accuracy conditions (Themanson
et al., 2012, 2014, 2019). The average number of trials contributing
to the ERP waveforms for errors (M = 96.5 trials, SD = 8.0) and
matched correct (M = 91.1 trials, SD = 6.5) trials for novices did
not differ significantly, Fs(1, 27) < 2.4, ps > .13, partial η2 values <
.08, from the average number of error (M = 91.9 trials, SD = 7.9)
and matched correct (M = 88.1 trials, SD = 6.4) trials for college
players. Similarly, the average number of trials contributing to the
ERP waveforms for posterror (M = 95.3 trials, SD = 8.6) and
postmatched correct (M = 91.0 trials, SD = 4.8) trials for novices
did not differ significantly, Fs(1, 27) < 1.6, ps > .22, partial η2
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values <.06, from the average number of posterror (M = 91.3 trials,
SD = 8.5) and postmatched correct (M = 89.4 trials, SD = 6.4)
trials for college players.

For all ERPs, the measurement window parameters were
determined by creating overall average waveforms across all task
conditions and groups for both the stimulus-locked waveforms and
the feedback-locked waveforms (i.e., collapsed localizers; Luck &
Gaspelin, 2017). For feedback-locked ERPs, RewP was quantified
as the average amplitude between 180 and 280 ms postfeedback in
each of two average feedback waveforms (error feedback and
matched correct feedback) at FCz, while FCP was quantified as
the average amplitude between 300 and 470ms postfeedback in each
of these two average waveforms at FCz. For stimulus-locked ERPs,
N2was quantified as the average amplitude between 200 and 330ms
poststimulus in the average waveform of all pitch stimulus events at
FCz. TheMFNwas quantified as the average amplitude between 300
and 550 ms poststimulus in the average waveform of all pitch
stimulus events at FCz. The data for each participant were then
outputted into SPSS (version 25.0; IBM Corp., Armonk, NY).

Statistical Analysis

Analyses were conducted using one-way analyses of variance
(ANOVAs) to examine the differences in task behavior and neural
activity in baseball players and novices. Separate omnibus 2
(feedback type: positive and negative) × 2 (expertise: player and
novice) mixed-model ANOVAs were conducted to examine the
influence of feedback type and expertise on neural and behavioral
measures of self-regulatory action monitoring. Follow-up analyses
utilized repeated-measures ANOVAs and two-tailed paired samples
t tests with Bonferroni correction as appropriate. The experiment-
wise alpha level was set at p < .05 for all analyses prior to Bonferroni
correction. Bivariate Pearson product–moment correlation analyses
were conducted to examine the relationships between the neural and
behavioral measures of actionmonitoring. The Benjamini-Hochberg
(1995) correction was calculated for the correlations in order to
correct for the false discovery rate given the number of correlations
analyzed. With the false discovery rate set at 0.2, due to this being
the first study of its kind in the literature (McDonald, 2014), the
correction resulted in a p = .04 level of significance for the correla-
tion analyses.

Results

Task Performance

Table 1 provides overall task performance data and postfeedback
performance data for each group. The ANOVA for response
accuracy revealed that college players performed better than
novices, F(1, 27) = 8.2, p = .008, partial η2 = .23, with higher
levels of response accuracy for players (M = 49.1% correct, SD =
3.2) compared with novices (M = 46.3% correct, SD = 2.0). The
ANOVA for RT did not reveal any significant effect in relation to
expertise, F(1, 27) = 2.0, p = .17, partial η2 = .07, with similar
RTs for college players (M = 399.6 ms, SD = 50.5) and novices
(M = 374.1 ms, SD = 47.2) during the task. These findings speak to
the overall greater performance of the players compared with the
novices (i.e., no speed accuracy tradeoff), as well as the known
difficulty in correctly distinguishing balls from strikes in real
time and the severe timing pressure evident during the task.
Further evidence for the time pressure comes from the finding
of no difference, t(28) = .82, p = .42, d = 0.03, in error RT

(M = 379.8 ms, SD = 42.1), and overall RT (M = 378.35 ms,
SD = 45.3). In laboratory experiments on other tasks, error RT is
typically faster than overall RT, as participants rush to respond
before they have processed the stimuli fully (Rabbitt, 1966;
Yeung et al., 2004).

Postfeedback Performance

Mixed-model ANOVAs examining postfeedback accuracy as a
function of feedback type and expertise revealed a significant effect
of expertise, F(1, 27) = 4.5, p = .04, partial η2 = .14, with college
players showing overall greater postfeedback accuracy (M = 49.0%
correct, SD = 3.8) compared with novice participants (M = 46.6%
correct, SD = 2.2). No significant effects were found for feedback
type or the interaction between expertise and feedback type,
Fs ≤ 1.4, ps ≥ .25, partial η2 values ≤.05, suggesting the nature
of the performance feedback (correct and incorrect) was not
associated with alterations in postfeedback task accuracy. For
postfeedback RT, the analyses revealed no significant effects for
either expertise, feedback type, or their interaction, Fs ≤ 2.1,
ps ≥ .15, partial η2 values ≤.07.

Feedback-Related Neural Measures

Figures 2a, 2b, and 2c provide grand-averaged feedback-locked
and stimulus-locked waveforms for each group. The omnibus
analysis for the RewP revealed no main effects for either feedback
type, F(1, 27) = 2.8, p = .11, partial η2 = .36, or expertise, F(1, 27) =
0.63, p = .43, partial η2 = .02. However, a significant interaction
between feedback type and expertise was present, F(1, 27) = 6.5,

Table 1 Overall Task Performance (RT and PC),
Postfeedback Behavioral Indices (Postfeedback RT
and Postfeedback Accuracy), RewP Amplitude, FCP
Amplitude, Overall N2, and Overall MFN Amplitude
for Baseball Players and Novices, M (SD)

Variable Baseball players Novices

RT 399.7 ms (50.5) 374.2 ms (47.2)

PC 49.1% (3.2) 46.3% (2.0%)

P-EF RT 398.4 ms (50.3) 375.6 ms (49.6)

P-CF RT 401.7 ms (54.6) 370.8 ms (45.7)

P-EF PC 50.4% (4.8) 46.6% (4.5%)

P-CF PC 47.5% (4.6) 46.6% (4.3%)

RewP-EF 3.1 μV (1.9) 2.0 μV (1.8)

RewP-CF 2.9 μV (1.6) 2.9 μV (2.1)

FCP-EF 3.2 μV (1.8) 2.1 μV (2.4)

FCP-CF 3.5 μV (2.4) 3.4 μV (2.4)

N2 −5.5 μV (3.4) −5.3 μV (3.2)

MFN −3.8 μV (2.6) −2.1 μV (1.5)

N2 P-EF −5.5 μV (3.1) −5.2 μV (3.3)

N2 P-CF −5.5 μV (3.7) −5.4 μV (3.3)

MFN P-EF −3.9 μV (2.3) −2.2 μV (1.7)

MFN P-CF −3.7 μV (2.9) −2.1 μV (2.0)

Note. RT = response time; PC = percentage correct (response accuracy); P-EF =
posterror feedback; P-CF = postcorrect feedback; EF = error feedback; CF =
correct feedback; RewP = reward positivity; FCP = frontocentral positivity;
N2 = N2 amplitude; MFN = medial frontal negativity.
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p = .02, partial η2 = .19. Follow-up Bonferroni-corrected t tests
revealed a significant effect for feedback in novices, t(14) = 2.4,
p = .03, d = 0.42, but not in college players, t(13) = .97, p = .35,
d = 0.10, with novices showing greater (more positive) RewP acti-
vation in response to positive (M = 2.9 μV, SD = 2.1) compared with
negative (M = 2.0 μV, SD = 1.8) feedback, whereas college players
showed similar levels of RewP activation related to both negative

(M = 3.1 μV, SD = 1.9) and positive (M = 2.9 μV, SD = 1.6)
feedback.

The omnibus mixed-model ANOVA comparing FCP ampli-
tudes across feedback type and expertise revealed a significant
main effect of feedback type, F(1, 27) = 15.5, p = .001, partial η2 =
.36, with correct feedback showing greater (more positive) FCP
amplitude (M = 3.4 μV, SD = 2.3) compared with error feedback
(M = 2.6 μV, SD = 2.1) across participant groups. No significant
main effect was present for expertise, F(1, 27) = 0.6, p = .46, partial
η2 = .02. The significant main effect for feedback type was qualified
by a significant interaction between expertise and feedback, F(1,
27) = 5.7, p = .02, partial η2 = .18. Follow-up Bonferroni-corrected
t tests revealed a significant effect for feedback in novices,
t(14) = 5.6, p < .001, d = 0.55, but not in college players,
t(13) = .9, p = .38, d = 0.15, with novices showing significantly
less FCP activation in response to negative (M = 2.1 μV, SD = 2.4)
compared with positive (M = 3.4 μV, SD = 2.4) feedback, whereas
college players showed similar levels of FCP activation related to
both negative (M = 3.2 μV, SD = 1.8) and positive (M = 3.5 μV,
SD = 2.4) feedback. These combined findings show that novices
exhibited smaller RewP and smaller FCP amplitudes related to
negative feedback compared with positive feedback, while experts
showed similar RewP and FCP amplitudes related to both negative
and positive feedback.

Stimulus-Related Neural Measures

The ANOVA for overall N2 amplitude revealed no significant effect
of expertise, F(1, 27) = 0.02, p = .89, partial η2 = .01, with similar
N2 amplitudes for players (M = −5.4 μV, SD = 3.4) and novices
(M = −5.3 μV, SD = 3.2). However, the ANOVA for overall MFN
amplitude revealed a significant effect,F(1, 27) = 4.3, p = .047, partial
η2 = .14, with college players exhibiting larger (more negative) MFN
amplitudes to pitch stimuli (M = −3.8 μV, SD = 2.6) compared with
novices (M = −2.2 μV, SD = 1.6).

Figure 2c — Grand-averaged stimulus-locked waveforms following
error and correct feedback trials by participant group (baseball players
and novices) at the FCz electrode site.

Figure 2a — Grand-averaged stimulus-locked waveforms for all trials
by participant group (baseball players and novices) at the FCz electrode
site.

Figure 2b — Grand-averaged feedback-locked waveforms for error and
correct feedback trials by participant group (baseball players and novices)
at the FCz electrode site.
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Relationships Between Neural and Behavioral
Measures

Previous research has suggested that RewP and FCP amplitudes are
associated with learning and improved task performance during
feedback-based learning tasks (Arbel & Wu, 2016; Themanson
et al., 2019). Accordingly, we wanted to examine the specific
relationships between RewP and FCP amplitudes and postfeedback
task performance for college players and novice participants.
Bivariate correlations revealed only one significant relationship
between RewP, FCP, and postfeedback task performance for
novices, with larger (more positive) RewP amplitude following
error feedback associated with greater response accuracy following
correct feedback for novices, r = .64, p = .01 (see Table 2 top). No
other significant relationships were present in novices.

In baseball players, significant correlations were present
between RewP and FCP amplitudes to both correct and error
feedback and all measures of postfeedback behavior except
response accuracy following correct feedback (see Table 2 bot-
tom). Larger (more positive) RewP amplitudes were associated
with faster overall and postcorrect feedback RTs, rs ≥ −.58,
ps ≤ .04. Furthermore, larger (more positive) RewP amplitudes
were associated with greater posterror response accuracy,
rs ≥ .59, ps ≤ .03. Finally, larger RewP amplitudes were associated
with faster RTs, rs ≥ −.58, ps ≤ .03, and greater overall response
accuracy, r = .56, p = .04. For FCP amplitudes in baseball players,

larger (more positive) FCP amplitudes were associated with faster
postfeedback RTs, rs ≥ −.59, ps ≤ .03, and greater posterror
response accuracy, rs ≥ .59, ps ≤ .03. Furthermore, FCP amplitudes
related to both error and correct feedback were correlated with
overall response accuracy, rs ≥ 59, ps ≤ .03, with larger FCP
amplitudes associated with greater response accuracy overall, rs
≥.59, ps ≤ .03, and faster overall RT, rs ≥ −.57, ps ≤ 04.

Finally, we were interested to see if feedback-locked neural
measures were correlated with stimulus-locked neural measures
following feedback. No relationships were evident for novices,
rs ≤ .36, ps ≥ .18 (see Table 3 left). However, a significant rela-
tionship was present for college players (see Table 3 right), with
larger (more positive) FCP amplitudes related to correct feedback
associated with larger (more negative) N2 amplitudes related to
pitch stimuli immediately following correct feedback, r = −.54,
p = .04.

Given that the N2 and MFN measure aspects of inhibitory
control and proactive control during task execution, we were
interested to see if these measures have direct relationships with
measures of task performance. Correlations were examined
between N2 and MFN amplitudes and measures of task perfor-
mance (response accuracy, RT). In novices, correlations revealed
no significant relationships for the N2 or MFN with either response
accuracy or RT, rs ≤ .38, ps ≥ .16, suggesting no relationships
between stimulus-locked neural measures and task performance.
However, in college players, marginally significant relationships

Table 2 Correlations Between Overall Behavior, Postfeedback Behavior, RewP Amplitude, and FCP Amplitude
for Novices and College Baseball Players

RT PC P-EF RT P-CF RT P-EF PC P-CF PC

Novices

RewP-EF .02 .25 −.05 −.04 −.29 .64*

RewP-CF .15 .19 .14 .12 .01 .21

FCP-EF .11 .07 .15 .04 −.18 .43

FCP-CF .23 −.11 .23 .20 −.30 .39

Baseball players

RewP-EF −.58* .46 −.54 −.61* .59* .01

RewP-CF −.66* .56* −.61* −.69* .72* .08

FCP-EF −.63* .59* −.59* −.65* .64* .20

FCP-CF −.59* .63* −.57* −.58* .58* .39

Note. RT = response time; PC = percentage correct (response accuracy); P-EF = posterror feedback; P-CF = postcorrect feedback; EF = error feedback; CF = correct
feedback; RewP = reward positivity; FCP = frontocentral positivity.
*p < .05 after Benjamini-Hochberg (1995) correction.

Table 3 Correlations Between Feedback-Related and Stimulus-Related Neural Measures for Novices
and College Baseball Players

Novices Baseball players

RewP-EF RewP-CF FCP-EF FCP-CF RewP-EF RewP-CF FCP-EF FCP-CF

N2 −.09 −.38 −.05 −.17 N2 −.26 −.32 −.32 −.52

MFN −.10 −.04 −.19 −.22 MFN .01 −.08 −.17 −.33

N2 P-EF .02 −.36 .02 −.09 N2 P-EF −.26 −.33 −.33 −.49

N2 P-CF −.05 −.36 −.12 −.23 N2 P-CF −.25 −.32 −.33 −.54

MFN P-EF −.01 −.02 −.03 −.02 MFN P-EF −.01 −.09 −.20 −.38

MFN P-CF −.22 −.07 −.33 −.33 MFN P-CF .02 −.07 −.15 −.34

Note. P-EF = posterror feedback; P-CF = postcorrect feedback; EF = error feedback; CF = correct feedback; RewP = reward positivity; FCP = frontocentral positivity;
N2 = N2 amplitude; MFN = medial frontal negativity.
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were present. Specifically, greater (more negative) N2 amplitude
was marginally associated with greater response accuracy, r = −.53,
p = .05, and greater (more negative) MFN amplitude was associ-
ated with greater response accuracy, but this relationship was
marginally significant, r = −.45, p = .10. When looking at correla-
tions between N2 and MFN amplitudes on trials following correct
and error feedback with postfeedback measures of performance,
correlations revealed that both greater N2 and MFN amplitudes on
stimuli following correct feedback associated with greater response
accuracy on those trials, rs ≥ −.57, ps ≤ .03. No other correlations
were significant between N2, MFN, and postfeedback performance
measures, rs ≤ .38, ps ≥ .16.

Discussion

The findings of the current study provide evidence for relationships
between task performance, neural activity related to pitch stimuli,
feedback-related neural activations, and postfeedback task perfor-
mance during a pitch classification paradigm in college baseball
players. This study is the first to examine the relationships among
patterns of neural activity related to pitches and feedback and how
that pitch-by-pitch neural activity may relate with both task perfor-
mance and self-regulatory processes during hitting. We found that
college players displayed greater proactive control (evidenced by
MFN amplitude) with all pitch stimuli, regardless of feedback type,
compared with novices. Furthermore, college players showed sig-
nificant relationships between neural activity and task performance
and self-regulatory measures, suggesting that the neural processing
of performance feedback and pitch stimuli are related to one another
and college players’ overall performance and task regulation.
Finally, college players exhibited larger RewP and larger FCP
amplitudes related to negative feedback compared with novices,
suggesting players can more effectively detect and utilize negative
feedback and exert greater attentional orienting and focal attention.
These findings show the importance of hitters’ neural activity
throughout their time in the batter’s box. By expanding our exami-
nation of hitters’ neural activity to include pitch-related and feed-
back-related self-regulatory processes, along with measuring pitch-
by-pitch task outcomes, we are able to show a number of significant
and meaningful relationships between cognitive processes and task
performance during the entire time a hitter is engaged at the plate.

Feedback-Related Self-Regulation

In relation to feedback-related neural activity, previous research
has shown larger RewP and larger FCP amplitudes related to
negative feedback to be associated with steeper learning curves
in feedback-based learning tasks (Arbel & Wu, 2016). Our study
extended this finding to include collegiate baseball players in the
present task, as college players exhibited larger RewP and larger
FCP amplitudes related to negative feedback compared with novice
participants, along with greater levels of overall response accuracy
during the task. Additionally, smaller RewP and larger FCP
amplitudes in baseball players, regardless of the nature of perfor-
mance feedback (positive/correct, negative/error), were strongly
associated with improvements in postfeedback response accuracy
and postfeedback RT. These postfeedback behavioral measures of
self-regulatory performance monitoring and adjustments reflect
reinforcement learning principles (Holroyd & Coles, 2002) and
behavioral adaptations during task execution to meet one’s in-
tended goals and improve performance (Gehring & Knight, 2000;
Kerns et al., 2004; Themanson et al., 2019; Yeung et al., 2004).

A larger RewPmay reflect that individuals are fast learners who are
more efficiently able to extract relevant information from task
feedback, and a larger FCP reflects an enhanced ability to orient
attention toward informative feedback and improve the learning
process, resulting in better performance outcomes (Arbel & Wu,
2016). In our task, collegiate baseball players should be more adept
at learning from feedback regarding the strike zone and implement-
ing that feedback in real time to improve performance, compared
with novices. Our findings support the notion that the RewP is a
proxy for one’s task expectations, while the FCP reflects attentional
orienting toward task-relevant feedback, and relationships exists
between RewP, FCP, and behavioral modifications aimed at
improving task performance (Arbel & Wu, 2016; Walsh &
Anderson, 2012). Both RewP and FCP amplitudes exhibited
significant associations with faster RT and greater response accu-
racy following each type of performance feedback in baseball
players, an effect not seen in novices. By examining these neural
measures to feedback, we obtain more objective measures of
ongoing cognitive processes and learn insights into task expecta-
tions, attentional focus, and self-regulatory processes in baseball
players during their time at the plate.

Stimulus-Related Self-Regulation

We observed enhanced MFN amplitudes related to pitch stimuli for
baseball players compared with novices, as well as greater overall
response accuracy. Furthermore, both enhanced N2 and MFN
amplitudes were associated with greater response accuracy and
greater response accuracy following correct feedback in baseball
players, but not novices. The combined neural and behavioral effects
in the present study support the previously noted effects that expert
baseball players exhibit greater response inhibition and inhibitory
control compared with novices (Nakamoto & Mori, 2008, 2012).
The finding of larger MFN amplitudes in college players compared
with novices is a novel finding, considering that previous research
has not examined the MFN component. Given that the MFN is
theorized to measure proactive control during task engagement
(West & Bailey, 2012), this finding suggests that baseball players
are executing the task under heightened levels of proactive self-
regulatory control and conflict adaptation compared with novices.
Proactive control is characterized as a preparatory control mecha-
nism aimed at priming and sustaining task-relevant processing
pathways before and throughout task engagement in an effort to
adapt performance in response to long-lasting (i.e., several seconds
or minutes) task-related conflict detected by the ACC (De Pisapia &
Braver, 2006). Furthermore, the relationship between response
accuracy and MFN amplitude in college baseball players suggests
that proactive control may be one mechanism through which baseball
players are better able to perform and engage self-regulatory learning
compared with novices. Accordingly, highlighting proactive control
when working with players may enhance skill acquisition, learning
processes, and performance outcomes.

In addition to relationships between overall response accuracy,
postcorrect feedback response accuracy, and MFN amplitudes in
college players, we also observed significant relationships between
postcorrect feedback response accuracy and N2 amplitude in college
players. The N2 has been related to the inhibition of action, as well
as response conflict (Clayson & Larson, 2012); both processes are
present in the current research and postulated to be greater for expert
baseball players compared with novices (Nakamoto & Mori, 2008,
2012). The effects of this enhanced response inhibition control are
not evidenced in overall larger N2 amplitudes for baseball players
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compared with novices in the current study, similar to the findings of
Nakamoto and Mori (2008, 2012). Rather, the effects of enhanced
inhibitory control and response inhibition during task execution can
be seen in the relationships N2 amplitude has with overall task
performance and postcorrect feedback response accuracy. Inhibitory
control, indexed by the N2, is considered vital for behavioral flexi-
bility and the programming and reprogramming of task-relevant
action (Mars et al., 2007; Nakamoto & Mori, 2012) during task
execution. In baseball players, but not novices, we also discovered a
significant relationship between N2 amplitude following correct
feedback and FCP amplitude related to correct feedback. Given
that FCP is associated with orienting attention toward task feedback
to enhance learning (Arbel & Wu, 2016) and that N2 reflects neural
processes engaging the inhibitory control of undesired or error
responses (Folstein & Van Petten, 2008), this relationship speaks
to the potential benefit of college players exhibiting an enhanced
ability to correctly adapt and improve performance following feed-
back. The relationship between feedback processing and response
inhibition results in greater overall accuracy and better accuracy
following correct feedback for players.

Limitations and Future Directions

The relatively small sample size and the cross-sectional nature of the
study each limit the strength of the findings. However, because the
findings in the present investigation are consistent with patterns
observed in previous research examining self-regulatory processes
(Arbel & Wu, 2016; Nakamoto & Mori, 2008, 2012; Themanson
et al., 2019), we believe we have assessed reliable associations
between neural and behavioral self-regulatory control processes in
baseball players while in the batter’s box. Furthermore, we have
extended and improved upon previous research by examining neural
activity related to both pitch stimuli and performance feedback for
hitters and providing a baseball-specific task utilizing the more
realistic visual perspective from inside the batter’s box. Future studies
utilizing larger participant samples are warranted, as are study designs
that allow for causal inferences and temporal modeling between self-
regulatory neural activity and task performance measures.

Conclusions

The current investigation offers new evidence into measures of
neural activity related to pitch stimuli and performance feedback
during a pitch classification paradigm and the relationships
between this neural activity and overall task performance, as
well as self-regulatory adjustments in behavior for baseball players.
Neural activity related to performance feedback reflects self-
regulatory cognitive processes, including performance expecta-
tions and attentional orienting. Neural activity during the pitch
stimulus itself reflects response inhibition processes and proactive
self-regulatory control processes. These processes are associated
with learning during task execution, as well as self-regulatory
adjustments in motor performance, to improve overall outcomes.
These combined results provide evidence for a general self-
regulatory framework that is responsive to task-relevant events,
including both task stimuli and performance feedback related
to task performance. Furthermore, our findings suggest that self-
regulatory learning adjustments that exist within this general
framework may be associated with enhanced response inhibition
and proactive control among baseball players and these inhibitory
control processes may be mechanisms underlying hitters’ attempts
to improve their task performance. Practical implications and uses

for this research include assisting and refining player evaluations
and player development procedures through a better understanding
of feedback-related self-regulatory processes and enhanced proac-
tive control during performance. These cognitive processes vary
among individuals, but they can also be trained or improved upon
within an individual as well (see Cahn & Polich, 2006; Miltner et al.,
1988). Using these neural measures, players, coaches, and trainers
can obtain a more objective measure of ongoing cognitive processes
present during a plate appearance. These neural data can anchor
instructions and conversations that are ongoing between coaches and
players. Furthermore, creating a neural profile of a player using this
ERP methodology could allow for a longitudinal examination of the
player across time, while periodic assessments couldmonitor patterns
of neural activation to implement changes to improve expectations,
attention, and control during hitting.
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